主講人:洪桂祥,、張之厚
時(shí) 間:2024年10月25日 上午8點(diǎn)(洪桂祥)
2024年10月25日 上午10點(diǎn)(張之厚)
舉辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
會(huì)議形式:講座,,A03號(hào)樓318(數(shù)學(xué)與統(tǒng)計(jì)學(xué)院會(huì)議室)
主講人簡(jiǎn)介:
1、洪桂祥,,哈爾濱工業(yè)大學(xué)教授,,博士生導(dǎo)師,2016年入選國(guó)家高層次青年人才項(xiàng)目,,2023年獲批國(guó)家杰出青年基金,。研究方向?yàn)?經(jīng)典、向量值,、非交換)調(diào)和分析,,量子概率論,非交換遍歷理論,,泛函分析及其在量子信息論與非交換幾何中的應(yīng)用?,F(xiàn)已在非交換鞅論,非交換遍歷論及非交換調(diào)和分析等領(lǐng)域上取得突破性進(jìn)展,,解決了若干公開(kāi)問(wèn)題,;部分工作已發(fā)表在Memoirs AMS, Duke Math. J, Math. Annalen, Comm. Math. Phy., Adv. Math., J. Funct. Anal., IMRN和Analysis & PDE等數(shù)學(xué)期刊上。
講座題目:John-Nirenberg inequalities for noncommutative BMO martingales
講座摘要:In this talk, I shall present the noncommtuative analogues of John-Nirenberg inequalities for martingales, which is based on two joint work with Congbian Ma (Xinxiang University),Tao Mei (Baylor University), and Yu Wang (Wuhan University).
2,、張之厚,,上海工程技術(shù)大學(xué)教授,美國(guó)《數(shù)學(xué)評(píng)論》評(píng)論員,。長(zhǎng)期從事Banach空間幾何理論與應(yīng)用及逼近論方面的研究,,主持和主要參與六項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目。在包括《J. Approx. Theory》,、《Nonlinear Analysis. TMA》,、《J.Math Anal Appl》、《Studia Math》,、《Houston J. Math》,、《Acta Math Sin》,、《Acta Math Sci》、《中國(guó)科學(xué).數(shù)學(xué)》等重要刊物在內(nèi)的雜志上發(fā)表論文70余篇,。在科學(xué)出版社出版列入大學(xué)數(shù)學(xué)科學(xué)叢書(shū)的學(xué)術(shù)專著一部,、在高教出版社出版教材兩部。排名第一分別獲得上海市自然科學(xué)獎(jiǎng)一項(xiàng),、上海市教學(xué)成果獎(jiǎng)兩項(xiàng),。主持完成上海市教委重點(diǎn)課程一門(mén)。曾任2018年國(guó)家自然科學(xué)獎(jiǎng)會(huì)評(píng)專家,,榮獲上海市育才獎(jiǎng),,寶鋼優(yōu)秀教師獎(jiǎng)等多項(xiàng)稱號(hào)。
講座題目:Three kinds of dentabilities in Banach spaces
講座摘要:In this talk, firstly we study some kinds of dentabilities in Banach spaces which are closely related to the famous Radon-Nikodym prperty. We introduce the concepts of the weak*-weak* denting point of a set, which are the generalizations of weak* denting point of a set in dual Banach spaces. By use of the weak*-weak denting point, we characterize the very smooth space, the point of weak*-weak continuity and the extreme point of a unit ball in dual Banach space, respectively. Meanwhile, we also characterize approximatively weak compact Chebyshev set in dual Banach spaces. Moreover, we defined the nearly weak dentability in Banach spaces, which is a generalization of near dentability. We proved that the necessary and sufficient conditions of the reflexivity by nearly weak dentability. We also obtain that nearly weak dentability is equivalent to both approximatively weak compactness of Banach spaces and w-strong proximinality of every closed convex subset of Banach spaces.